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Abstract

This study is an investigation of the optimal process of urbanization with a two-

sector model comprising a rural and an urban sector. Not only long-run steady

states, but also the processes of convergence to them are optimally controlled with

a positive time discount in the present analysis. Results of the study are two-fold:

i) Even if an urbanized steady state with higher output is possible, to realize it is

not desirable if the funds for development are supplied at a high interest rate; ii)

If an economy approaches an urbanized steady state from a non-urbanized steady

state via a take-off, a government should accelerate rural-urban migration in early

stages of development while slowing and restricting it in later stages.
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1 Introduction

According to World Urbanization Prospects [14], the urbanization rate for the entire

world increased greatly from 29% to 47% during the latter half of the twentieth century.
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Although urbanization in more-developed countries began to converge during those years,

less-developed countries remain in the midst of rapid urbanization 1.

The purpose of this study is to investigate the optimal process of rural-urban mi-

gration along with economic development from theoretical and dynamic points of view.

Completion of the entire process of urbanization takes much time. For that reason, we

cannot remain unconcerned about the social benefits of the urbanization process and

the long-run steady state realized as a result of urbanization. Such an issue is espe-

cially important when considering a less-developed economy in the middle of or before

rapid urbanization. In each stage of development, what kind of intervention into laissez-

faire urbanization process is required? To answer that question, this study investigates

the optimization problem of inter-sectoral population distribution in a simple two-sector

dynamic model.

Economic development with industrialization is a process of urbanization. The tech-

nology of production is labor intensive and land intensive, with constant returns to scale

in the primitive economy. Subsequently, it becomes capital intensive in the modern

economy, with increasing returns to scale resulting from positive externalities. In such

a process of industrialization, people move from rural to urban areas, where many fac-

tories and firms with modern technology are concentrated. Such urbanization processes

have been described in labor-surplus models e.g. Lewis [7] and Fei and Ranis [2]. Such

a cluster of various economic activities in cities with definite places is well known to

yield not only negative externalities by congestion, but also higher productivity through

so-called agglomeration economies. As a result, the net benefit of a city is the non-

monotonic increase in its size. A typical and early example of such a study is the system

of cities model presented by Henderson [3]. Furthermore, the dynamic rural-urban model

1According to the data tables included in World Urbanization Prospects [14], the urbanization rate
of more-developed countries has grown by only 0.9% during 2000–2005, but by 2.6% in less-developed
countries during the same period.
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of Bertinelli and Black [1] is an achievement in recent years, which investigated growth

of the urban sector 2.

This study develops the rural-urban model of Bertinelli and Black [1] by considering

dynamic optimization of urbanization processes. The economy of the presented model

comprises two sectors: a rural sector with constant returns to scale, and an urban sector

with both positive and negative externalities. Although the basic structure resembles

that of the model of Bertinelli and Black [1], the present study drastically simplified their

original model. Endogenous accumulation of human capital was considered in Bertinelli

and Black [1], although the present study uses neither capital nor human capital: only

the population of the urban sector in each period is a matter for consideration. This

study might be criticized for such an omission of the model. However, this study was

undertaken to solve the dynamic optimization problem by government, which was not

considered in Bertinelli and Black [1]; moreover, the model must be simplified to treat

the problem analytically.

In the present model, the positive externality is not a simultaneous effect but rather a

dynamic effect with which the current scale of the urban sector influences future produc-

tivity. This assumption expresses that various economic activities accumulated in the

past play important roles in production in the urban sector. A connection of a commer-

cial transaction and a mutual trust between firms, along with a know-how in procedure

of business deal in that regard, for example, have been established via past transactions

in the cities. If we consider the growth of cities, such a dynamic externality is important

as well as the simultaneous agglomeration economies, e.g. the range of variety 3. On the

2Agglomeration economies in the urban sector are a kind of demand-pull force of urbanization.
However, supply-push force that is attributable to a rapid increase in population in the rural sector also
drives urbanization. Although the poverty of the pushed population has been recognized as a serious
problem in recent years, this study only considers the demand-pull force to emphasize the aspect that
urbanization contributes to sound industrialization and economic growth.

3The idea that the current stock of (human) capital influences the accumulation of new (human)
capital was presented in the endogenous growth models of Lucas [8] and Romer [12]. A similar setting
was also adopted in Bertinelli and Black [1]. In the present study, their idea is represented in a simple
form
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other hand, the congestion externality described in this study is a simultaneous effect,

as in previous models.

Under the combination of dynamic positive externality and static negative external-

ity, the optimal size of the urban sector is determined in the trade-off between present

congestion and future growth. This study subsumes a lesser-developed country that is

not urbanized in the initial period. The central government is supplied an unbounded

but costly fund by ODA from developed countries; the government fosters urbanization

with that fund to maximize dynamic social welfare. The interest rate of ODA serves as

a discount factor of time to represent costs of funds in that optimization problem.

The analyses described in this paper are two-fold. First, this study evaluates whether

the big push is truly desirable given a positive discount factor. In models with increasing

returns to scale, multiple stable equilibria are well known to appear frequently. For

that reason, once it is trapped into an underdeveloped equilibrium, the coordination of

economic activities by the authority, a so-called big push, is necessary to lead the economy

to the developed equilibrium. The necessity of big push was supported analytically

by Murphy et al. [11] for the first time, and by succeeding analyses of Matsuyama

[9], Iwaisako [4], and Murata [10]. The models of Bertinelli and Black [1] and the

present study also include multiple equilibria with lower and higher rates of urbanization.

However, this study does not simply support big push even if the economy enjoys a higher

level of output in the urbanized steady state. We evaluate the process of convergence to

the new equilibrium under a positive discount factor or interest rate of ODA 4. Results

of our analysis show that the big push is desirable only when ODA is funded at an

appropriately low interest rate.

Second, from a dynamic point of view, this study reconsiders the well known result

4Although the importance of cost and benefit analysis for big push is addressed by the two period
model of [11], we develop the analysis in the model without the terminal period and with ODA from
abroad.
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that cities are overpopulated. Henderson [3] derived a result that cities under laissez-

faire are always larger than the optimal size under the assumption that the benefit of

each city is single-peaked in its size. That result has been supported by results of various

theoretical and empirical studies of Kanemoto [5] and Kanemoto et al. [6] 5. However,

their results mainly addressed the equilibrium sizes of cities; the present study examines

growing cities. The process of urbanization, especially its rapidity, is addressed in our

analysis. Results indicate that growth of the urban sector has priority; urbanization is

accelerated in the initial stages of urbanization, but urbanization should be slowed down

in the latter stage of urbanization to restrict excess congestion and provide a soft landing

on the optimal steady state.

The present paper is organized as follows: Section 2 presents the model and its be-

haviors under laissez-faire. Section 3 describes formulation of the dynamic optimization

problem by the government and solves the problem. Section 4 describes salient conclu-

sions of this study.

2 The model and a laissez-faire economy

2.1 Model

This study considers a small open economy that consists of rural and urban sectors.

The economy is closed with population, there are constant N̄ numbers of homogeneous

population in each period. Each person survives for only one period, during which time

the worker works and consumes. At the beginning of each period, individuals can choose

sectors to engage in without cost and thereby maximize their respective utility levels.

The two sectors input only labor to produce homogeneous output. They differ only

in their technologies 6. In addition, this study subsumes that each sector includes only

5Their conclusions are not necessarily preserved in a model that consists of only a few cities. Pa-
pageorgiou and Pines [13]. They investigated a two-region model in which both positive and negative
externalities pertain within each region. Those studies show examples that the concentration in the
larger city can be either too large or too small.

6We assume that the two sectors produce different outputs in their factories, but that they are sold
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one-worker firms.

The rural sector produces output under constant returns to scale. Therefore, the

productivity of each worker in the unit of the money is denoted by g ≥ 0. Consequently,

the consumable income of a worker in the rural sector is always g.

The technology of the urban sector is that of increasing returns to scale for the

inter-temporal externality of production. The present productivity of each worker in the

urban sector increased during the previous period; per-worker productivity in period t is

denoted as nδ
t−1 with 0 < δ < 1, where ns represents the population of the urban sector

in period s. On the other hand, a negative externality from congestion increases in the

current size of the sector. The negative externality is displayed as a monetary cost for

living for each urban sector resident, which is denoted as bnt. We denote the consumable

income of a worker in the urban sector in period t as y(nt−1, nt) = nδ
t−1 − bnt.

2.2 Urbanization under laissez-faire

In this model, households choose the sector to maximize their static consumable income

because they survive for one period only. Therefore, yt(nt−1, nt) = g must hold if a

nt ∈ (0, N̄) is in static equilibrium for a given nt−1. Furthermore, yt(nt−1, 0) ≤ g and

yt(nt−1, N̄) ≥ g must hold respectively for nt = 0 and nt = N̄ to be in equilibrium. The

current urban scale brings only negative externalities. For that reason, the utility of the

urban sector decreases in its current size. Consequently, nt is determined uniquely for

given nt−1. As a result, the static equilibrium of location of households is represented as

a function nt = Q(nt−1), which is shown as follows.

Q(nt−1) =





0 if 0 ≤ nδ
t−1 ≤ g

(nδ
t−1 − g)/b if g < nδ

t−1 < g + bN̄

N̄ if g + bN̄ ≤ nδ
t−1 ≤ N̄

(1)

in a global market and changed into homogeneous consumption goods or money. Therefore, the two
sectors are apparently producing the same type of good directly. For simplicity, it is assumed that the
prices of the goods are given and fixed.
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The process of economic development of this model is shown as the sequence of these

static equilibria. The phase diagram is given in Figs. 1(a) and 1(b), in each of which

nt = Q(nt−1) and a 45 line are drawn.

In Fig. 1(a), nt = Q(nt−1) and nt = nt−1 are shown to have two intersections: US

and S. In that figure, two stable steady states, O and S, and an unstable one, US, exist;

the process of convergence and which equilibria to be realized depend on the initial size

of the urban sector, which is given as n0. If n0 > NU is given, the economy converges

monotonously to S, but converges to O if n0 < NU ; therefore, NU is the threshold level

of urbanization. Regarding the convergence process which approaches the origin, the

urban sector shrinks and industrialization does not occur.

The state in which the economy is trapped into the less urbanized equilibrium is

designated as a development trap in Bertinelli and Black [1]. To escape from the trap,

they also support that the government should lead the economy to the converging path

to the more-industrialized equilibrium, N∗, by attracting labor to the urban sector with
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subsidies or some other inducement. Generally, such coordination by the authority is

called a big push.

Figure 1(b), in which nt = Q(nt−1) and nt = nt−1, shows only one intersection – US;

consequently, it has no interior equilibrium. Instead, nt = N̄ , the state in which the

entire population lives in urban areas, is the long-run equilibrium.

3 Optimal control of urbanization

This section presents analyses of the optimal urbanization process from a dynamic point

of view. In each stage of economic development, what kind of intervention of govern-

ment is desirable? To determine the optimal sequence of policy to advance economic

development, this study addresses a government of the small open country; its optimal

policy is derived as a maximization of its dynamic objective function.

3.1 Optimization problem

It is assumed that the government can borrow funds freely with a constant interest

rate r ≥ 0, which is funded by development assistance from more-developed countries.

Furthermore, it is assumed that the government freely redistributes the income among

sectors through taxation and subsidies. The subsidy to each household in the urban

(rural) sector in period t is denoted as kut(krt); taxes are represented by their negative

value. Because the government can borrow money without an upper bound, taxes and

subsidies need not be balanced within a period; only Σ∞
t=1ρ

t−1[kunt + kr(N̄ − nt)] = 0

must hold.

With such a redistribution of income, the government can intervene in the population

distribution between sectors. Because not kut and krt, but only their difference, denoted

as kut − krt, affects the population distribution, only kut − krt is related to control of

the population distribution. The word “subsidy” is used hereinafter in relative terms to
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concentrate on the influence to population distribution. The urban sector is said to be

subsidized (taxed) in period t if kut − krt is positive (negative).

If the ultimate objective of the government is to maximize a dynamic social welfare,

two steps can achieve such optimization: maximize the current value of aggregate output

through inter-sectoral redistribution; redistribute it between generations. The govern-

ment controls two variables kut and krt in this model. Therefore, the first and second

steps are treated as independent problems. Once the aggregate output is maximized, an

appropriate redistribution of it necessarily achieves social optimum irrespective of the

setting of the social welfare function 7. Therefore, this study merely highlights the first

problem, or output maximization, because we do not need a two-sector model like this

to treat the second one.

Although the government indirectly controls the urban population nt via kut− krt in

the first setting of the model, the problem is described as if nt is directly controlled for

simplicity of description. The problem that the government faces in the initial period

t = 1 is described as 8

max
n1,n2,···

Σ∞
t=1(n

δ
t−1nt − gnt − bn2

t )ρ
t−1, (2)

where n0, the initial size of the urban sector, is given in this problem. Also, ρ ≡ 1/(1+r)

is the time discount factor which holds 0 ≤ ρ ≤ 1.

The first-order condition or Euler equation of the problem described above is shown

7Σ∞t=1ρ
t−1[kunt + kr(N̄ − nt)] = 0 must hold for budget constraint of the government. Therefore, if

we respectively denote the total output and consumption in period t as Yt and Ct, then Ct = Yt +(kut−
krt)nt + krtN̄ and Σ∞t=1ρ

t−1Ct = Σ∞t=1ρ
t−1Yt hold. Even if the government maximizes Σ∞t=1ρ

t−1Yt by
determining kut−krt in each period, any Ct is feasible as long as Σ∞t=1ρ

t−1Ct = Σ∞t=1ρ
t−1Yt holds because

krt is independent of kut − krt if kut is controlled appropriately. Therefore, to maximize Σ∞t=1ρ
t−1Yt is

independent of a problem by which a social welfare described by W (C1, · · · ) is maximized with respect
to C1, · · · .

8Equation (2) maximizes the aggregate profit of the urban sector instead of GDP, but those two prob-
lems are equivalent because maxn1,n2,···Σ∞t=1[n

δ
t−1nt−bn2

t +g(N̄−nt)]ρt−1 = maxn1,n2,··· Σ∞t=1(n
δ
t−1nt−

gnt − bn2
t )ρ

t−1 + Σ∞t=1ρ
t−1gN̄ holds.
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as

For all t ≥ 1,

nδ
t−1 − 2bnt − g + ρδnt+1n

δ−1
t = 0 if 0 < nt < N̄ (3)

nδ
t−1 − 2bnt − g + ρδnt+1n

δ−1
t ≤ 0 if nt = 0 (4)

nδ
t−1 − 2bnt − g + ρδnt+1n

δ−1
t ≥ 0 if nt = N̄ . (5)

However, the first-order condition is insufficient to identify the unique optimal path.

We derive another necessary condition for the optimal path to exclude the surviving

paths from the first-order conditions. If a path is optimal, following Lemma 1 must be

true for all points on that path:

Lemma 1

On the optimal path, the following hold: i) if nt > nt−1, nt+1 ≥ nt holds, ii) if nt < nt−1,

nt+1 ≤ nt holds, iii) if nt = nt−1, nt+1 = nt holds.

The proof is noted in Appendix 1. That is, nt must be either monotonously increasing

or decreasing in t on the optimal path. Lemma 1 might be readily apparent because it

excludes inefficient paths, which do not converge directly to those destinations.

From the first-order conditions (3) to (5) and Lemma 1, we can derive a transition

equation 9 as the following.

nt+1 − nt =

{
n1−δ

t (2bnt − ρδnδ
t − nδ

t−1 + g)/(ρδ) if 0 < nt < N̄

0 if nt = 0, N̄
(6)

9The transition in 0 < nt < N̄ is a simple reform of (3). If nt = N̄ holds, nt ≥ nt−1; hence nt+1 = N̄
holds because of Lemma 1. Furthermore, if nt = 0 holds, nt ≤ nt−1; hence nt+1 = 0 holds because of
Lemma 1. Therefore, (6) is derived.
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3.2 Phase diagrams

In this subsection, phase diagrams are drawn to analyze the optimal urbanization process.

The phase diagram is drawn in (nt−1, nt) coordinates. To describe the changes of the

variables, ∆nt−1 ≡ nt − nt−1 and ∆nt ≡ nt+1 − nt are defined.

First, reform of (6) yields the loci on which ∆nt = 0 as the following equation.

nt−1 = (2bnt − ρδnδ
t + g)1/δ (7)

nt = 0 (8)

nt = N̄ (9)

The locus expressed by (7) is drawn by a convex curve. From (6), ∆nt is positive

(negative) on the left (right) of that locus.

Second, the ∆nt−1 = 0 locus is drawn as the 45 line crossing the origin in (nt−1, nt)

coordinates because ∆nt−1 = 0 is equivalent to nt = nt−1. ∆nt−1 is positive (negative)

on the left (right) of the locus.

Phase diagrams are shown as Figs. 2(a)–2(c), with which we derive the optimal

urbanization path. Figures 2(a) and 2(b) differ only in the horizon of total population

N̄ ; others are the same. In Fig. 2(a), where the total population is sufficiently large, the

internal steady state or the intersection of ∆nt−1 = 0 and ∆nt = 0 loci is constrained

by total population, but is crowded out of the bounds in Fig. 2(b), in which the total

population is small. Furthermore, Fig. 2(c) depicts a situation in which ∆nt−1 = 0 never

intersects ∆nt = 0, unlike Figs. 2(a) and 2(b).

In these diagrams, nt−1 is the state variable and nt is the jumping variable or policy

variable controlled by the government. In period t, nt−1 has already been determined

from the behavior in the previous period and is therefore given, although nt is freely

controlled to maximize the objective function. However, nt becomes the state variable

in the next period.
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Before investigating the behaviors of those diagrams, we derive the conditions of

parameters by which each case arises. First, substituting nt−1 = nt = n into (7) yields

(1 + ρδ)nδ − 2bn = g. (10)

The intersections of ∆nt−1 = 0 and ∆nt = 0 loci are derived if we solve (10) with n, and

NE is represented by their larger solution. The case of Fig. 2(a) or 2(b) arises when (10)

has real solutions. Its condition is described as

g ≤ (1− δ)(1 + ρδ)1/(1−δ)(δ/2b)δ/(1−δ). (11)

That condition holds if g and b are small. Unless the condition described above holds,

the case of Fig. 2(c) arises. In addition, Fig. 2(a) arises when NE is less than N̄ . For

NE < N̄ to be satisfied, parameters must meet the following conditions:

(1 + ρδ)N̄ δ − 2bN̄ < g (12)

δ(1 + ρδ)N̄ δ−1 − 2b < 0. (13)

Intuitively, the conditions described above hold if and only if N̄ is sufficiently large.

Figure 2(b) arises if N̄ is small and the conditions do not hold.

We investigate the behavior of Fig. 2(a) first. Four types of path exist in this phase

diagram: (i) the paths converging to P, (ii) the paths swerving around D, (iii) those

converging to O, (iv) the unique saddle path to the internal steady state E. Among

those, two specific paths remain but others are excluded by necessary conditions.

First, if nt−1 = nt = N̄ holds; nt+1 > nt = N̄ must hold for the first-order condition

(5) to be satisfied because point P is above the ∆nt = 0 locus represented as (7). There-

fore, the first-order condition is not satisfied in P. For that reason, all paths converging to

that point are excluded. Second, the paths swerving around D are excluded by Lemma

1. Third, if we neglect the discreteness of the model and assume the behavior of the

diagram to be continuous, all the paths to the origin are excluded aside from that which
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meets nt = 0 at Point A because they do not hold the first-order condition when they

meet nt = 0 in the right of A 10. The remaining path also satisfies Lemma 1 because

it is monotonic. Consequently, that path is not excluded by any necessary conditions.

Fourth, the saddle path to E holds the first-order condition (3) and Lemma 1; hence it

also survives. We denote the coordinates of E as (NE, NE).

Conclusively, two paths remain in Fig. 2(a) which cannot be rejected by any necessary

conditions: one is the path converging to O via A; another is the saddle path to E. We

must compare them to determine the optimal one among those, but the answer for that

question is left until the next subsection.

We next describe the case of Fig. 2(b) in which the internal steady state E is crowded

out the binding of total population. Consequently, three types of paths exist. First, also

10The conclusion is slightly different when we strictly consider the discreteness of the model. If the
behaviors are diagrammed discretely, paths can leap the locus of ∆nt = 0; they might strike nt = 0 in
the left of A. Such paths hold the first-order condition because (4) is satisfied on segment OA, which is
left of ∆nt = 0. It is not surprising that all such paths are optimal, although thousands of them exist.
Each path passes a finite number of points in the discreteness of the model. Consequently, the optimal
path for each initial state is not expressed by a unique curve, unlike the continuous model.
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in that case, the path via A survives among the paths converging to the origin. Second,

the paths swerving around D are excluded by Lemma 1. Third, some paths are shown

to converge to P in this figure. Among those paths, that which intersects nt = N̄ at B is

optimal if we regard the behavior of the diagram as smooth. In that path, the first-order

condition is satisfied when the economy arrives at the steady state. The other paths

which strike nt = N̄ in the left of point B are excluded because they do not hold the

first-order condition (5) such as paths converging to P in Fig. 2(a) 11 Therefore, the two

paths survive also in Fig. 2(b).

The last is represented in Fig. 2(c), where ∆nt−1 = 0 and ∆nt = 0 loci never

mutually intersect. In that figure, all paths converging to P are excluded from first-order

conditions (5) as in Fig. 1(a); only the path converging to O via A survives among the

first-order conditions. Therefore, without the analysis in the next subsection, the urban

sector is shown to diminish in the optimal steady state in that case.

3.3 Selection of the optimal path

In the previous subsection, two candidates of the optimal paths exist in Figs. 2(a) and

2(b): paths converging to the steady state E or P, say urbanized steady states, and that

to O, called the non-urbanized steady state. In the present subsection, we investigate

which is optimal by comparing them. Although the present analysis specifically examines

paths with urbanization, the efficiency of internal urbanized steady states is discussed

before choosing the optimal path. Throughout the analysis of this subsection, we only

highlight the case represented in Fig. 2(a), where internal steady states exist. Therefore,

it is presumed that (10) holds to exclude Fig. 2(c) and that N̄ is appropriately large to

exclude Fig. 2(b).

11All the paths which strike nt = N̄ in the right of B are optimal when we strictly consider discreteness
of the model.
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3.3.1 Efficiency of the urbanized steady state

First, we investigate when the urbanized steady state is efficient. A steady state nt−1 =

nt = NE is called efficient if N δ
E − bNE > g is satisfied in a steady state and the per-

period net output of one worker of the urban sector is less than that of the rural sector.

Otherwise, the steady state is called inefficient. Because we neglect the constraint of

total population by assuming that N̄ is appropriately large for simplicity of analysis, NE

is an internal steady state.

Urbanization is never a desirable outcome if the internal steady state is inefficient,

or if the steady state is inferior to the non-urbanized steady state represented by O in

Figs. 2(a) and 2(b). For an efficient internal steady state, the parameters must hold the

following conditions represented by Lemma 2.

Lemma 2

An efficient internal steady state exists if the following hold : i) condition (11) holds when

ρ ≤ 1/(2− δ), ii) g > (1− ρδ)(ρδ/b)δ/(1−δ) holds when ρ > 1/(2− δ).

The detailed process to derive Lemma 2 is presented in Appendix 2. That Lemma

states that no inefficient urbanized steady state can be excluded by the necessary con-

ditions. There might be an inefficient urbanized steady state in the phase diagram if ρ,

b, and g are appropriately high.

3.3.2 Desirability of a big push

The paths with urbanization are never selected as the optimal path if an efficient urban-

ized steady state is not possible. However, the paths to the efficient urbanized steady

state are not necessarily optimal when we evaluate them using a positive time-discount

value. In the present inquiry, we therefore investigate whether urbanization is desirable
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or not. The set of parameters is assumed to hold the conditions in Lemma 2 to promise

the existence of an efficient internal solution. In addition, n0 = 0 is given as the initial

state, although the evaluations of converging paths are dependent on the initial state.

Such an initial state is an equilibrium under laissez-faire, which is caught in a develop-

ment trap. For that reason, a big push is necessary so that the economy leaves it for

urbanized states. Considering such an initial situation, we investigate the question of

whether an undeveloped economy should be developed by a big push.

If we determine the optimal path explicitly, to compare their value directly is the

only way because the two remaining paths cannot be excluded further by the necessary

conditions. A numerical approach must be used to compare them, but we did not use

such an approach. Instead, we derive some intuitively clear results related to the choice

of optimal path in an analytical approach.

First, the following Lemma 3 is presented as a benchmark result:

Lemma 3

If ρ = 1, a big push from the initial state n0 = 0 is desirable as long as there is efficient

urbanization.

The proof is noted in i) of Appendix 3 Lemma 3 shows that a simple way to compare

steady states in evaluating a big push is justified in the situation in which the government

cares about the future of the country as much as the present. However, despite whatever

long-run prospects the government has, the future is less evaluated than the present

because the discount factor of time in this model displays the interest rate of ODA.

Therefore, that the entire process of a big push should be evaluated under a positive

time-discount value is important from a political perspective.

As for the optimal path selection and the value of the time discount, the following
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Proposition 1 is derived as a result.

Proposition 1

Suppose that n0 = 0 is given for an initial state and that an efficient steady state exists.

At that time, there is a threshold level of discount factor represented by ρ̂ ∈ (0, 1); a

big-push is desirable when ρ is smaller than ρ̂. In addition, dρ̂/dg > 0 holds.

The proof is noted in Appendix 3. According to Proposition 1, the government of

a developing country should lead the economy to the urbanized steady state E only

when the time discount is sufficiently small. Furthermore, the definition ρ = 1/(1 + r)

implies that donor countries should set a low interest rate for the receiving country to

develop. Under an appropriately low interest rate, the cost for urbanization becomes

lower than its benefit of that; consequently, governments of less-developed countries

choose to promote urbanization. In addition, urbanization is likely to be desirable if

rural sector productivity is low because the opportunity cost for urbanization is low

during that time. However, this result depends on the assumption of small openness.

An agricultural sector with low productivity requires a large labor input to feed the

people if we consider a closed economy.

3.4 Optimal sequence of tax and subsidy

The final part of this paper presents discussion related to the desirability of intervention

by government with taxes and subsidies by comparing the optimal path with the laissez-

faire path. In the analysis of the present subsection, n0 = 0 is given for the initial state.

Furthermore, it is presumed that ρ is appropriately large so that the urbanization is

desirable. Under such an assumption, we highlight the optimal political intervention to

control an urbanization process.
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The laissez-faire and optimal urbanization paths are compared in Figs. 4(a) and 4(b).

Under laissez-faire, the population of the urban sector is determined using a function

nt = Q(nt−1), and the laissez-faire path of nt is represented by the nt = Q(nt−1) curve,

which is concave with a positive tangent, as depicted in Fig. 1(a). On the other hand,

the optimal urbanization path is expressed as an upward sloping curve with a positive

intersection 12.

We first regard Fig. 3(a). Both the laissez-faire and optimal paths intersect the 45

line in this figure. Because people concentrate in the urban sector until the per-capita

productivity of that sector decreases to g and the urban sector is thereby overpopulated

under laissez-faire, S is northeast of E. In Fig. 3(a), optimal nt is smaller than that

of laissez-faire when nt−1 is small, and is larger when nt−1 is close to NE. That result

implies the following: if n0 = 0 is given as the initial state, the government should

12In Figs. 3(a) and 3(b), because we neglect the discreteness of this model and treat the model as if
it were continuous, the tracks of nt are drawn as smooth curves.
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give subsidies to the urban sector in the early stage of development, and impose taxes

when the economy is sufficiently developed 13. In other words, urbanization should be

initially encouraged, then restricted. The political implications near the steady state

support the result of Henderson [3]: that cities become too large. However, this study

supports that immigration in the urban sector should not always be restricted. Neces-

sarily, policy changes must be made according to the stage of development if the process

of development is considered.

Figure 3(b) portrays a polar case in which g = 0 holds and the internal steady state

E is crowded out of the bounds of total population. In the figure, some objectives of

urbanization control are emphasized. Furthermore, in that figure, the implications for

optimal policy are presented as similar to those of the previous case; the urban sector

should be subsidized initially, with taxes imposed during the latter stage of development.

In the situation shown in Fig. 3(b), however, the economy automatically begins urban-

ization and converges to the optimal steady state P under laissez-faire 14. Why should

the government intervene in the development process?

Another purpose for intervention in the urbanization process is especially emphasized

in Fig. 3(b): to control the speed of urbanization. In the analysis addressing the

converging process of the model, the purpose of political intervention in this case is

not only to lead the economy to the optimal equilibrium, unlike the arguments of big

push. At the initial stage of development, urbanization should be accelerated so that the

economy develops faster. However, during the latter half of development, rural-urban

income disparities expand and immigration in the urban area is so greatly accelerated.

There, urbanization should be slowed down for a soft landing on the long-run steady

state.

13We can not strictly exclude the situation in which the optimal and laissez-faire paths might intersect
more than three times, unlike Fig. 2(a) (the number of intersections must be odd). If so, the result
becomes slightly more complicated, but the political implication of the model is almost the same.

14Because nt = 0 is an unstable steady state, a small perturbation causes urbanization in that state.
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Conclusively, optimal intervention to urbanization has the following four phases: i)

big push for take-off, ii) acceleration of urbanization, iii) slowing of urbanization, and iv)

completion of the optimal steady state. In the first and second phases of the sequence

described above, the urban sector is subsidized, but it is taxed in the third and fourth

phases.

4 Concluding remarks

This study has investigated the optimal urbanization process of an underdeveloped econ-

omy with a simplified dynamic model. In the present model, the combination of an

intertemporal positive externality of production and simultaneous negative externality

by congestion in the urban sector are important factors. That combination yields a

trade-off between growth and congestion of the urban sector and the government con-

trols rural-urban migration with consideration of the effects of a positive discount factor.

In addition to steady states and long-run equilibria, the growth process was evaluated

to determine the optimal dynamic policy in this study.

Even with extreme simplification of the model, this study has presented some note-

worthy political implications by considering the process by which the urban sector grows.

First, a big push is desirable only when the time discount is appropriately small, even

though such a policy leads the economy to the better steady state. In other words,

the ODA must be funded at an appropriately low interest rate to let the government

of an underdeveloped economy resolve urbanization. Second, to optimize rural-urban

migration, the urban sector should be subsidized to encourage immigration in that sec-

tor during early development, while it should be taxed to restrict immigration when the

urban sector has grown sufficiently. In that context, the importance of controlling the

speed of urbanization was also addressed.

The former and the latter results were derived by reconsidering well-known results
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of Murphy et al. [11] and Henderson [3], respectively, from a dynamic point of view. In

fact, their implications are not justified in any situation by the results of our analysis.

This study is not intended to contradict their contributions, but merely to remake and

develop them. Future studies should develop the present model by explicit introduction

of both private and public capital into the model, and by considering perpetual growth

of the whole economy.

Appendix 1. Proof of Lemma 1

We presume that F (nt−1) denotes the maximized current value of profit of urban sector

when nt−1 is given in period t, and that the optimal nt for given nt−1 is denoted as a

function φ(nt−1). Because the functions F (nt−1) is not affected directly by t, objective

function of the government is represented by a function of nt−1 and nt as nδ
t−1nt− bn2

t −

gnt + ρF (nt). The following first and second order conditions hold respectively if nt is

optimal and in (0, 1);

nδ
t−1 − 2bnt − g + ρF ′(nt) = 0 (A.1)

−2b + ρF ′′(nt) < 0 (A.2)

Differentiating (A.1) by nt and nt−1 yields

δnδ−1
t−1dnt−1 + [−2b + F ′′(nt)]dnt = 0. (A.3)

And then, by substituting (A.2) into (A.3),

dnt

dnt−1

=
δnδ−1

t−1

2b− F ′′(nt)
> 0 (A.4)

holds nearby the internal optimal path. Furthermore, dnt/dnt−1 = 0 holds if optimal nt

is equal to 1 or 0. Therefore, if the optimal nt for given nt−1 is denoted as a function

φ(nt−1) which is not affected by time t, φ′(nt−1) ≥ 0 holds.
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In light of the result presented above, the following are readily apparent. i) nt+1 =

φ(nt) ≥ φ(nt−1) = nt holds if nt > nt−1 holds, ii) nt+1 = φ(nt) ≤ φ(nt−1) = nt holds if

nt < nt−1, iii) nt+1 = φ(nt) = φ(nt−1) = nt holds if nt = nt−1. Q.E.D.

Appendix 2. A detailed derivation of the efficiency

condition

At a steady state nt−1 = nt = n, the per-capita income of urban sector in each period is

y(n, n) = nδ − bn (A.5)

In Figs. A1(a) and A1(b), the left-hand-side of eq. (10) and y(n, n) are depicted respec-

tively as curves CA and CB.

The two curves intersect twice at n = 0 and n = NC ≡ (ρδ/b)1/(1−δ) > 0. The tangent

of CB is positive at n = NC , while that of CA at n = NC is positive if parameters hold
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for the following but are negative otherwise.

ρ ≤ 1/(2− δ) (A.6)

i) If the tangent of CA is positive at n = NC , as drawn in Fig. A1(a), then y(NE, NE) ≥ g

holds as long as eq. (10) has real solutions.

ii) On the other hand, if the tangent of CA is negative at n = NC , as drawn in

Fig. A1(b), then y(NE, NE) ≥ g holds if and only if y(NC , NC) ≥ g holds. In fact,

y(NC , NC) ≥ g is satisfied if the following parameters hold.

g > (1− ρδ)(ρδ/b)δ/(1−δ) (A.7)

Appendix 3. Proof of Lemma 3 and Proposition 1

The converging path to the steady state E and O are represented by pE and pO respec-

tively. If an initial state n0 is given, the aggregate present value GDP yield by path pE

and pO are denoted respectively as FE(n0, ρ) and FO(n0, ρ). In addition, their difference

FE(n0, ρ)−FO(n0, ρ) is defined as a function FEO(n0, ρ), which is the aggregate profit of

urbanization.

If n0 = 0 is given as an initial state and if the population distribution on the path

pE beginning at that initial state is represented by ψt, the following holds;

FEO(0, ρ) = Σ∞
t=1ρ

t−1fEO(ψt−1, ψt) = Σ∞
t=1ρ

t−1
[
ψδ

t−1ψt − bψ2
t − gψt

]
. (A.8)

In the above equation, fEO(ψt−1, ψt) represents the momentary profit of the urban sector

in period t.

i) We consider a path pe instead of pE, where nt = NE holds for all t ≥ 1, and denote

the aggregate value of GDP by Fe(n0, ρ). It might be readily apparent that Fe(n0, ρ) ≤

FE(n0, ρ) holds. If the steady state E is strictly efficient, or if y(NE, NE) > g holds, then

Fe(0, 1)− FO(0, 1) = −bN2
E + Σ∞

t=2 [y(NE, NE)NE −NEg] > 0. (A.9)

23



From inequality (A.9) and Lemma 2, FEO(0, 1) > 0 holds if g < (1− δ)(δ/b)δ/(1−δ) holds.

ii) In addition, when ρ = 0, FO(0, 0) = g and FE(0, 0) = −bψ2
t + (N̄ − ψt)g; hence

FEO(0) < 0 holds. Thereby, Lemma 3 is proved.

iii) Because FE(n0, ρ) and FO(n0, ρ) are continuous in ρ, and because FEO(0, 1) > 0 and

FEO(0, 0) < 0 hold, there is a ρ̂ ∈ (0, 1) which holds that FEO(n0, ρ̂) = 0 in 0 ≤ g <

(1− δ)(δ/b)δ/(1−δ)).

iv) The differentiation of FEO(n0, ρ) by ρ with the envelope theorem implies that

∂FEO(n0, ρ)

∂ρ
= Σ∞

t=2(t− 1)ρt−2
(
ψδ

t−1ψt − bψ2
t − ψtg

)
. (A.10)

In that time, we represent the path pE by a function φ(nt−1) as the notation in Appendix

1, then φ(ψt−1) = ψt holds. If the economy is on the path pE, the current value of the

aggregate profit in period t is represented by FEO(nt−1, ρ) where nt−1 is given. The

differentiation of FEO(nt−1, ρ) by nt−1 with the envelope theorem yields

∂FEO(nt−1, ρ)

∂nt−1

=
∂fEO(nt−1, φ(nt−1))

∂nt−1

= δnδ−1
t−1φ(nt−1) > 0. (A.11)

Therefore, the momentary profit of urbanization in period t increases in nt−1, which

means that fEO(ψt−1, ψt) increases in time t if the economy is on the path pE beginning

at n0 = 0. Furthermore, FEO(0, ρ̂) = 0 holds from the definition of ρ̂. If we substi-

tute those two facts and (A.8) into (A.10), ∂FEO(0, ρ)/∂ρ|ρ=ρ̂ > 0 is confirmed because

−ΣT
t=1ρ̂

t−1fEO(φt−1, φt) < 0 holds for all finite T ; hence ρ̂ is unique if other parameters

are given. In addition, FEO(0, ρ) < 0 holds in ρ > ρ̂ and FEO(0, ρ) > 0 holds in ρ < ρ̂ is

proved for uniqueness of ρ̂.

v) Finally, differentiating (A.8)with the envelope theorem yields the following;

dFEO(0, ρ) =
(−Σ∞

t=1ρ
t−1ψt

)
dg +

∂FEO(0, ρ)

∂ρ
dρ (A.12)

If we set dFEO(0, ρ) = 0 , dρ̂/dg|ρ=ρ̂ > 0 is proved because of ∂fEO(ρ)/∂ρ|ρ=ρ̂ > 0.

Q.E.D.
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